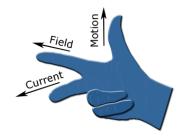
Introduction to Electrical Power

Current and Voltage

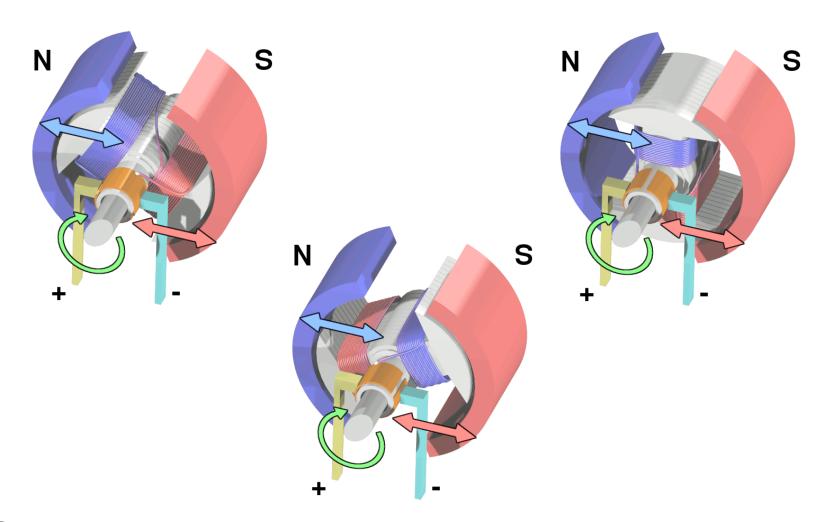
• Current:


http://en.wikipedia.org/wiki/Electric current

- Direct Current:
 http://en.wikipedia.org/wiki/Direct current
- Alternating Current:
 http://en.wikipedia.org/wiki/Alternating current
- Voltage: http://en.wikipedia.org/wiki/Voltage
- Ohm's Law: http://en.wikipedia.org/wiki/Ohm%27s Law
- AC vs. DC: http://www.pbs.org/wgbh/amex/edison/sfeature/acdc.html

Generation of Electricity

- By Electrochemical Reaction
 - http://www.pbs.org/wgbh/amex/edison/ sfeature/acdc_insidebattery.html
- By Electromagnetic Induction
 - http://en.wikipedia.org/wiki/Electromagnetic induction
 - Faraday's Law of Induction



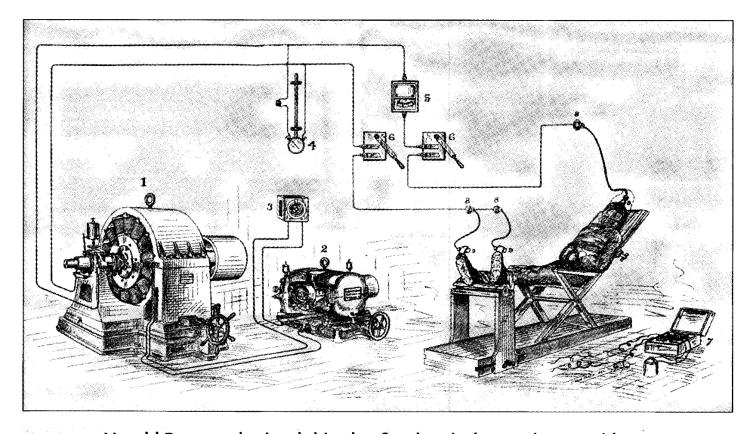
Electrical Generator

- http://en.wikipedia.org/wiki/
 Electrical generator
- AC Generator
 - http://www.pbs.org/wgbh/amex/edison/ sfeature/acdc insideacgenerator.html
- DC Generator
 - http://micro.magnet.fsu.edu/electromag/ java/generator/dc.html

DC Generator

Early Use of Electricity

- Electroplating
 - http://en.wikipedia.org/wiki/Electroplating
- Lighting
 - Incandescent Light Bulb
 - http://en.wikipedia.org/wiki/
 Incandescent light bulb
- Measurement of Electric Power Usage
 - http://en.wikipedia.org/wiki/Electric power


Transformer

- Electromagnetic Induction
 - http://en.wikipedia.org/wiki/
 Electromagnetic induction
- Basic Principle of Transformer
 - http://en.wikipedia.org/wiki/Transformer
- Transformer Applications
- War of Currents:

http://en.wikipedia.org/wiki/ War of Currents

Electric Chair

Harold Brown submitted this plan for electrical execution as evidence during the hearings phase of Kemmler's appeal. On the generator he added a label reading "Westinghouse Electric, Pittsburgh."

Inductors and Capacitors

- Inductance and Inductors
 - http://en.wikipedia.org/wiki/Inductor
- Capacitance and Capacitors
 - http://en.wikipedia.org/wiki/Capacitor
- Impedance
- Reactive Power and Compensation
- Filtering

Electric Motor

- Lorentz Force
 - http://en.wikipedia.org/wiki/Lorentz force law
- Electric Motors
 - http://en.wikipedia.org/wiki/Electric motor
- Variable-Frequency Drives
 - http://en.wikipedia.org/wiki/Variablefrequency_drive

Maxwell's Equations

Name	Differential form	Integral form
Gauss's law	$ abla \cdot \mathbf{D} = ho$	$\oint_{S} \mathbf{D} \cdot \mathrm{d} \mathbf{A} = q = \int_{V} \rho \mathrm{d} V$
Gauss' law for magnetism (absence of magnetic monopoles)	$\nabla \cdot \mathbf{B} = 0$	$\oint_S \mathbf{B} \cdot d\mathbf{A} = 0$
Faraday's law of induction	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\oint_C \mathbf{E} \cdot d\mathbf{l} = -\int_S \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{A}$
Ampère's Circuital Law (with Maxwell's extension)	$ abla extbf{H} = extbf{J} + rac{\partial extbf{D}}{\partial t}$	$\oint_C \mathbf{H} \cdot d\mathbf{l} = \int_S \mathbf{J} \cdot d\mathbf{A} + \int_S \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{A}$

Summary

- Electricity
 - Voltage, Current, Power
- DC vs. AC
- DC and AC Power Generation
- Ohm's Law, Voltage Drop
- Transformer and Power Transmission
- Electric Motor

Lab Activities

 Construction and measurement of a dcdc converter

